Dalil Titik Tengah Pada Segitiga Dilengkapi Pola Soal Dan Pembahasan


Dalil Titik Tengah Pada Segitiga

Dalil titik tengah pada segitiga berbunyi: 
Segmen garis penghubung titik-titik tengah dari kedua sisi-sisi segitiga yaitu sejajar dengan sisi ketiga dan panjangnya yaitu setengah dari panjang sisi ketiga tersebut.

Untuk lebih jelasnya perhatikan gambar berikut:

Pada segitiga di atas, misal titik $D$ yaitu titik tengah sisi $AC$, dan titik $E$ yaitu titik tengah sisi $BC$, segmen garis penghubung titik  $D$ dan titik $E$ (segmen garis $DE$) pasti sejajar dengan garis $AB$, dan panjang $DE=\frac{1}{2}\times AB$.

Pembuktian Dalil Titik Tengah pada Segitiga

Perhatikan kembali segitiga $ABC$ pada gambar 1 di atas:
Segitiga $ABC$ sebangun dengan segitiga $DEC$, berdasarkan sifat kesebangunan kita peroleh:

$$\begin{align*}\frac{CD}{CA}&=\frac{DE}{AB}\\\frac{1}{2}&=\frac{DE}{AB}\\DE&=\frac{1}{2}\times AB\: \: \: \blacksquare\end{align*}$$

Contoh Soal dan Pembahasan

Contoh 1
Perhatikan gambar segitiga $PQR$ di bawah ini:

Jika panjang ruas garis $ST=15$ cm, berpakah panjang ruas garis $QR$

Pembahasan:
Karena titik $S$ merupakan titik tengah ruas garis $QP$ dan titik $T$ titik tengah ruas garis $PR$, maka berlaku dalil titik tengah sehingga diperoleh:
$ST=\frac{1}{2}\times QR\Rightarrow QR=2\times ST$
$QR=2\times 15=30$ cm

Contoh 2
Perhatikan segitiga $ABC$ siku-siku di $B$ pada gambar di bawah ini:

Jika panjang $BE=5$ cm dan panjang $AD=13$ cm, berapakah panjang $AB$ dan $DE$?

Pembahasan:
$BC=2\times BE=2\times 5=10$
$AC=2\times AD=2\times 13=26$

Dengan menggunakan teorema pythagoras, kita peroleh:
$\begin{align*}AB^2&=AC^2-BC^2\\&=(AC+BC)(AC-BC)\\&=(13+5)(13-5)\\&=18\times 8\\&=144\\AB&=\sqrt{144}\\&=12 \end{align*}$

Dengan menggunakan dalil titik tengah pada segitiga kita peroleh:
$DE=\frac{1}{2}\times AB=\frac{1}{2}\times 12=6$

Contoh 3
Perhatikan gambar berikut:

Nilai $x+y$ pada gambar di atas yaitu ....

Pembahasan:
Perhatikan segitiga $CDE$, berdasarkan dalil titik tengah pada segitiga, maka kita peroleh:

$x=\frac{1}{2}\times DE=\frac{1}{2}\times 22 = 11$

Segitiga $ABC$ sebangun dengan segitiga $CDE$, maka berlaku:
$\begin{align*}\frac{AC}{DC}&=\frac{AB}{DE}\\ \frac{3}{2}&=\frac{y}{22}\\y&=\frac{3}{2}\times 22\\y&=33\end{align*}$

maka $x+y=11+33=44$

Itulah pembahasan mengenai dalil titik tengah pada segitiga.
Semoga bermanfaat.


Belum ada Komentar untuk "Dalil Titik Tengah Pada Segitiga Dilengkapi Pola Soal Dan Pembahasan"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel