Ketaksamaan Chaucy Schwarz Engel (Cs Engel)


Pada kesempatan kali ini kita akan membahas sebuah ketaksamaan yang sangat penting dalam matematika, adalah ketaksamaan Chaucy Schwarz (Cauchy-Schwarz Inequality). Bagi kalian yang akan berkompetisi dalam olimpiade matematika Ketaksamaan Chaucy Schwarz bersama dengan $AM-GM$ merupakan "senjata" yang wajib kalian kuasai, jadi baca dan pelajari gesekan pena ini sampai simpulan ☺


Teorema Chaucy Schwarz:

Misalkan $a_1, a_2, ..., a_n$ dan $b_1, b_2, ... , b_n$ adalah bilangan-bilangan real, maka berlaku:


$$(a_1^{2}+a_2^{2}+...+a_n^{2})(b_1^{2}+b_2^{2}+...+b_n^{2})\geq (a_1b_1+a_2b_2+...+a_n b_n)^{2}$$


kesamaan terjadi jikalau dan hanya jikalau $\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}$

ketaksamaan di atas dapat juga di tulis:
$$\boxed{\left(\sum_{k=1}^{n} a_{k}b_{k}\right)^{2}\leq\left(\sum_{k=1}^{n}a_k^{2}\right)\left(\sum_{k=1}^{n} b_k^{2}\right)}$$


BUKTI

Didefinisikan fungsi $F:\mathbb{R}\rightarrow \mathbb{R}$ dengan $$F(t)=\sum_{k=1}^{n}(a_{k}-tb_{k})^{2}$$
tampak terang bahwa $F$ merupakan fungsi tak negatif, oleh alasannya itu diperoleh:

\begin{align*}F(t)&=\sum_{k=1}^{n}a_{k}^2-2ta_{k}b_{k}+t^2b_k^2\\&=\left ( \sum_{k=1}^{n}b_k^2 \right )t^2-2\left ( \sum_{k=1}^{n}a_kb_k \right )t+\left ( \sum_{k=1}^{n}a_k^2 \right )\geq 0\end{align*} 

karena $F(t)\geq0$ maka diskriminannya $\leq 0$ :

\begin{align*}4\left ( \sum_{k=1}^{n}a_kb_k \right )^2-4\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )&\leq0\\4\left ( \sum_{k=1}^{n}a_kb_k \right )^2&\leq4\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )\\\left ( \sum_{k=1}^{n}a_kb_k \right )^2&\leq\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )\hspace{1cm}\blacksquare\end{align*}

pada Ketaksamaan Chaucy Schwarz  apabila kita pilih $a_i=\frac{t_i}{\sqrt{w_i}}$ dan $b_i=\sqrt{w_i}$ dengan $i=\left \{ 1, 2, 3, ... n \right \}$ dan $w_i\geq0$, maka diperoleh:
\small\begin{align*}\left ( \frac{t_1^2}{w_1} +\frac{t_2^2}{w_2}+...+\frac{t_n^2}{w_n}\right )\left ( w_1+w_2+...+w_n \right )&\geq\left ( t_1+t_2+...+t_n \right )^2\\ \frac{t_1^2}{w_1} +\frac{t_2^2}{w_2}+...+\frac{t_n^2}{w_n}&\geq\frac{\left ( t_1+t_2+...+t_n\right )^2}{w_1+w_2+...+w_n}\end{align*}

Bentuk ketaksamaan diatas dikenal dengan Ketaksamaan Chaucy Schwarz Engel (CS Engel) yang dipopulerkan oleh Arthur Engel, ketaksamaan ini dikenal juga dengan "Lemma Titu" atau "Lemma Andreescu".


Ketaksamaan Chaucy Schwarz Engel (CS Engel):

Untuk sembarang bilangan Real $t_1, t_2, t_3, ..., t_n$ dan sembarang bilangan real faktual $w_1, w_2, w_3, ... , w_n$ berlaku
$$\frac{{t_{1}}^{2}}{w_{1}}+\frac{{t_{2}}^{2}}{w_{2}}+\frac{{t_{3}}^{2}}{w_{3}}+...+\frac{{t_{n}}^{2}}{w_{n}}\geq\frac{(t_1+t_2+t_3+...+t_n)^{2}}{w_1+w_2+w_3+...+w_n}$$


CONTOH SOAL


SOAL 1
Untuk $a, b, c$ bilangan real positif, buktikan
$$\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\geq 9$$


Pembahasan:
Perhatikan bahwa:
$\small\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )=\left [ \left ( \sqrt{a} \right )^2 +\left ( \sqrt{b} \right )^2+\left ( \sqrt{c} \right )^2\right ]\left [ \left ( \frac{1}{\sqrt{a}} \right )^2+\left ( \frac{1}{\sqrt{b}} \right )^2+\left (  \frac{1}{\sqrt{c}}\right )^2 \right ]$

berdasarkan Ketaksamaan Chaucy Schwarz, maka:

$\scriptsize\begin{align*} \left [ \left ( \sqrt{a} \right )^2 +\left ( \sqrt{b} \right )^2+\left ( \sqrt{c} \right )^2\right ]\left [ \left ( \frac{1}{\sqrt{a}} \right )^2+\left ( \frac{1}{\sqrt{b}} \right )^2+\left (  \frac{1}{\sqrt{c}}\right )^2 \right ]&\geq\left ( \sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}} \right )^2\\ &\geq\left ( 1+1+1 \right )^2\\ &\geq 3^2\\ &\geq 9 \end{align*}$

SOAL 2 (South Africa, 1995)
Tunjukkan untuk setiap bilangan real faktual $a, b, c, d$ berlaku
$$\left ( a+b+c+d \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d} \right )\geq 64$$

Pembahasan:
Perhatikan bahwa $\left ( \frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d} \right )$ dapat kita tulis $\left ( \frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d} \right )$, sehingga berdasarkan CS Engel:
$$\begin{align*}\left ( \frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d} \right )&\geq\frac{\left (1+1+2+4 \right )^2}{a+b+c+d}\\&\geq \frac{8^2}{a+b+c+d}\\ &\geq \frac{64}{a+b+c+d}\end{align*}$$
sehingga:
$$\left ( a+b+c+d \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d} \right )\geq 64$$

Penting:
Saya sarankan anda membuka blog ini menggunakan PC/laptop, alasannya jikalau menggunakan mobile/android kemungkinan tampilan persamaan matematika yang panjang akan terpotong, jikalau memang terpaksa menggunakan mobile/android maka saya sarankan dalam posisi landscape dan pastikan setting rotasi layar dalam kondisi aktif.


$\blacksquare$ Denih Handayani, 2017

Belum ada Komentar untuk "Ketaksamaan Chaucy Schwarz Engel (Cs Engel)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel