Soal Dan Pembahasan Unbk 2019 Smk Kelompok Tkp
Soal dan Pembahasan Isian Singkat Ujian Nasional Berbasis Komputer (UNBK) Tahun 2019 SMK kelompok TKP (Teknologi, Kesehatan dan Pertanian)
Ujian Nasional Berbasis Komputer (UNBK) Tahun 2019 sudah tamat diselenggarakan. Untuk Sekolah Menengah Kejuruan (SMK) penyelenggaraan Ujian Nasional lebih dulu dari SMA/MA dan juga SMP yaitu tanggal 25 sampai 28 Maret 2019 dan Ujian Susulannya tanggal 15 dan 16 Arpil 2019.
Khusus untuk mata pelajaran matematika, berdasarkan isu dari beberapa peserta ujian, soal tahun ini lebih sulit dari soal UN tahun lalu. Berikut ini kami akan membahas 4 soal isian singkat UNBK 2019 SMK kelompok Teknologi, Kesehatan dan Pertanian yang kami peroleh dari beberapa siswa peserta UN 2019 berdasarkan ingatan mereka dan bekas coretan kertas buram dikala mereka melaksanakan ujian.
Soal isian singkat UNBK terdiri dari 4 butir soal. Materi yang diujikan pada isian singkat UNBK 2019 Matematika SMK Kelompok TKP terdiri dari:
- Deret Geometri
- Dimensi Tiga / Bangun Ruang
- Kombinasi
- Fungsi Kuadrat
Berikut ini soal dan pembahasan isian singkat UNBK 2019 SMK Kelompok TKP:
Soal 1 (Deret Geometri)
Diketahui dua bilangan yaitu 4 dan 2.916. Diantara dua bilangan tersebut disisipkan 5 bilangan sehingga bersama bilangan tersebut membentuk deret geometri. Jumlah deret geometri yang terbentuk tersebut yaitu ....
Pembahasan:
rasio dari dua buah bilangan sebelum disisipkan 5 bilangan gres (rasio dari 4 dan 2.916) yaitu $\displaystyle r_1=\frac{2.916}{4}=729$
Misal $r_2$ yaitu rasio barisan bilangan gres sesudah disisipkan $n$ buah bilangan, maka:
$\displaystyle r_2=\sqrt[n+1]{r_1}$
Dengan menggunakan formula di atas, maka barisan bilangan yang terbentuk sesudah mensisipkan 5 buah bilangan diantara 4 dan 2.916 adalah:
$\begin{align*}r&=\sqrt[5+1]{729}\\&=\sqrt[6]{729}\\&=3\end{align*}$
Karena $r>1$ maka untuk menentukan jumlah $n$ suku pertama kita gunakan formula $\displaystyle S_n=\frac{a(r^n-1)}{r-1}$
Jadi, jumlah barisan tersebut (jumlah 7 suku pertama) dengan suku pertama $a=4$ dan $r=3$ adalah:
$\begin{align*}S_7&=\frac{4(3^7-1)}{3-1}\\&=\frac{4(2.187-1)}{2}\\&=2(2.186)\\&=4.372\end{align*}$
Soal 2 (Bangun Ruang)
Perhatikan gambar kubus $ABCD.EFGH$ di bawah ini
Jika panjang rusuk kubus yaitu $6\sqrt{5}$ cm dan titik $P$ yaitu titik tengah $GH$. Jarak titik $D$ ke garis $CP$ yaitu ... cm
Pembahasan:
Perhatikan gambar di bawah ini:
Titik $P$ terletak di tengah garis $GH$ sehingga
$\begin{align*}GP=PH&=\frac{1}{2}\times GH\\&=\frac{1}{2}\times 6\sqrt{5}\\&=3\sqrt{5}\end{align*}$
$\begin{align*}CP&=\sqrt{CG^2+GP^2}\\&=\sqrt{(6\sqrt{5})^2+(3\sqrt{5})^2}\\&=\sqrt{180+45}\\&=\sqrt{225}\\&=15\end{align*}$
$PQ=GC=6\sqrt{5}$
Perhatikan segitiga $DCP$
$\begin{align*}DR\times PC&=DC\times PQ\\DR&=\frac{DC\times PQ}{PC}\\&=\frac{6\sqrt{5}\times 6\sqrt{5}}{15}\\&=\frac{180}{15}\\&=12\end{align*}$
Jadi, jarak dari titik $D$ ke garis $PC$ yaitu 12 cm
Soal 3 (Kombinasi)
Di dalam keranjang berisi 20 butir telur dan 2 butir diantaranya busuk. Ibu mengambil 3 butir telur dari keranjang tersebut secara acak. Banyak cara pengambilan jikalau terambil paling sedikit 2 telur yang baik yaitu ....
Pembahasan:
Di dalam keranjang berisi 18 telur baik dan 2 telur busuk. Jika ibu mengambil 3 telur, kemungkinan menerima paling sedikit 2 telur baik yaitu ibu mendapat 2 baik dan 1 bau atau ketiganya telur baik, dengan kombinasi kita peroleh:
$\begin{align*} C_2^{18}\times C_1^2+C_3^{18}&=153\times 2+816\\&=1122\end{align*}$
Jadi banyak cara pengambilan yaitu 1.122 cara
Soal 4 (Fungsi Kuadrat/Aplikasi Turunan)
Suatu pekerjaan sanggup diselesaikan dalam $x$ hari dengan biaya $f(x)=x^2-4x+5$ dalam ratusan ribu rupiah. Banyak hari yang diperlukan biar biaya yang dikeluarkan minimum yaitu .... hari.
Pembahasan:
Soal ini sanggup kita selesaikan dengan menggunkan rumus titik balik fungsi kuadrat atau sanggup juga dengan menggunkan turunan.
Cara 1:
Titik balik/puncak suatu fungsi kuadrat $f(x)=ax^2+bx+c$ yaitu $\left(-\frac{b}{2a},-\frac{D}{4a}\right)$ dengan $D=b^2-4ac$
Karena pada soal di atas yang ditanyakan hanya nilai $x$-nya saja, maka kita hanya tinggal mencari absis dari titik balik fungsi $f(x)=x^2-4x+5$ yaitu $x=-\frac{-4}{2(1)}=2$
Cara 2:
Nilai maksimum/minimum suatu fungsi sanggup kita cari dengan menggunakan turunan pertama.
$\begin{align*}f'(x)&=0\\2x-4&=0\\2x&=4\\x=2\end{align*}$
Jadi, biar biaya yang dikeluarkan minimum, diperlukan waktu 2 hari.
Demikianlah pembahasan soal isian singkat UNBK 2019 SMK Kelompok TKP.
Semoga bermanfaat.
Lihat video pembahasannya di sini
Karena pada soal di atas yang ditanyakan hanya nilai $x$-nya saja, maka kita hanya tinggal mencari absis dari titik balik fungsi $f(x)=x^2-4x+5$ yaitu $x=-\frac{-4}{2(1)}=2$
Cara 2:
Nilai maksimum/minimum suatu fungsi sanggup kita cari dengan menggunakan turunan pertama.
$\begin{align*}f'(x)&=0\\2x-4&=0\\2x&=4\\x=2\end{align*}$
Jadi, biar biaya yang dikeluarkan minimum, diperlukan waktu 2 hari.
Demikianlah pembahasan soal isian singkat UNBK 2019 SMK Kelompok TKP.
Semoga bermanfaat.
Lihat video pembahasannya di sini
Silakan gabung di Fans Page Facebook, Channel Telegram untuk memperoleh update terbaru, dan Subscribe Channel YouTube m4th-lab untuk memperoleh video pembelajaran matematika secara gratis, untuk mengikuti tautan klik pada tombol di bawah ini:
m4th-lab Youtube Channel:
m4th-lab Facebook Fans Page:
m4th-lab Telegram Channel:
@banksoalmatematika
Belum ada Komentar untuk "Soal Dan Pembahasan Unbk 2019 Smk Kelompok Tkp"
Posting Komentar