Soal Dan Pembahasan Sbmptn 2017 (Matdas/Tkpa Arahan 224)
Soal SBMPTN 2017 Matematika Dasar Kode 224, silakan download pada link ini
Soal No 1
Misalkan $A^T$ yaitu transpos matriks $A$. Jika $A=\begin{pmatrix}a &1 \\ 0 &b\end{pmatrix}$ dan $B=\begin{pmatrix}1 &2 \\ 2 &4\end{pmatrix}$ sehingga $A^TB=\begin{pmatrix}1 &2\\ 5 &10\end{pmatrix}$. Maka nilai $a+b$ yaitu ....
A. 1
B. 2
C. 3
D. 4
E. 5
Pembahasan:
$\begin{align*} A^{T}B&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\\ \begin{pmatrix}
a & 0\\1 & b\end{pmatrix}\begin{pmatrix}
1 & 2\\2 & 4 \end{pmatrix}&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\\\begin{pmatrix}
a & 2a\\1+2b & 2+4b\end{pmatrix}&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\end{align*}$
dari kesamaan matriks di atas maka kita peroleh $a=1$ dan $1+2b=5 \Rightarrow b=2$, maka $a+b=1+2=3$
A. 1
B. 2
C. 3
D. 4
E. 5
Pembahasan:
$\begin{align*} A^{T}B&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\\ \begin{pmatrix}
a & 0\\1 & b\end{pmatrix}\begin{pmatrix}
1 & 2\\2 & 4 \end{pmatrix}&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\\\begin{pmatrix}
a & 2a\\1+2b & 2+4b\end{pmatrix}&=\begin{pmatrix}1 & 2\\5 & 10\end{pmatrix}\end{align*}$
dari kesamaan matriks di atas maka kita peroleh $a=1$ dan $1+2b=5 \Rightarrow b=2$, maka $a+b=1+2=3$
Jawaban : C
Soal No 2
Jika himpunan penyelesaian $|2x-a| < 5$ adalah $\left\{x | -1 < x < 4 \right\}$ maka nilai $a$ yaitu ....
A. $-4$B. $-3$
C. $-1$
D. $3$
E. $4$
Pembahasan:
$$-5\lt 2x-a \lt 5 \\ a-5 \lt 2x \lt a+5 \\ \frac{a-5}{2}\lt x \lt \frac{a+5}{2}$$
perhatikan, soal sudah memberikan interval $x$ yaitu $-1\lt x \lt 4$, maka:
$\begin{align*}\frac{a-5}{2}&=-1\\a-5&=-2\\a&=-2+5\\a&=3\end{align*}$
Jawaban: D
Soal No 3
Perhatikan gambar berikut:
A. $\frac{x}{3}$
B. $\frac{2x}{9}$
C. $\frac{x}{9}$
D. $\frac{x}{18}$
E. $\frac{x}{36}$
Pembahasan:
$\begin{align*}\text{Luas segitiga}\space ABC&=\frac{1}{2}\times BC\times AB\\x&=\frac{1}{2}\times BC\times AB\\BC\times AB&=2x\end{align*}$
$\text{Luas segitiga}\space KMN=\frac{1}{2}\times MN\times BK$
Perhatikan bahwa:
$MN=\frac{1}{3} BC$
$BK=\frac{2}{3} AB$
maka:
$\begin{align*}\text{Luas segitiga}\space KMN&=\frac{1}{2}\times MN \times BK\\&=\frac{1}{2}\times \frac{1}{3}BC\times\frac{2}{3}AB\\&=\frac{1}{9}\times BC\times AB\end{align*}$
Di atas kita telah menemukan bahwa $BC\times AB=2x$, dengan demikian
Luas segitiga $KMN=\frac{1}{9}\times 2x=\frac{2x}{9}$
Pada segitiga siku-siku samakaki $ABC$, sisi $AB$ dan $BC$ masing-masing terbagi menjadi tiga bagian yang sama, berturut-turut oleh titik $K$, $L$, $M$ dan $N$. Jika luas segitiga $ABC$ yaitu $x$ $cm^2$, maka luas segitiga $KMN$ yaitu ... $cm^2$
A. $\frac{x}{3}$
B. $\frac{2x}{9}$
C. $\frac{x}{9}$
D. $\frac{x}{18}$
E. $\frac{x}{36}$
Pembahasan:
$\begin{align*}\text{Luas segitiga}\space ABC&=\frac{1}{2}\times BC\times AB\\x&=\frac{1}{2}\times BC\times AB\\BC\times AB&=2x\end{align*}$
$\text{Luas segitiga}\space KMN=\frac{1}{2}\times MN\times BK$
Perhatikan bahwa:
$MN=\frac{1}{3} BC$
$BK=\frac{2}{3} AB$
maka:
$\begin{align*}\text{Luas segitiga}\space KMN&=\frac{1}{2}\times MN \times BK\\&=\frac{1}{2}\times \frac{1}{3}BC\times\frac{2}{3}AB\\&=\frac{1}{9}\times BC\times AB\end{align*}$
Di atas kita telah menemukan bahwa $BC\times AB=2x$, dengan demikian
Luas segitiga $KMN=\frac{1}{9}\times 2x=\frac{2x}{9}$
Jawaban : B
Soal No 4
Sumbu simetri grafik $f(x)=ax^2+bx+c$ yaitu $x=1$, jikalau $f(0)=0$ dan $f(4)=-16$, maka nilai $b-a$ yaitu ....
A. 6
B. 5
C. 4
D. 3
E. 2
Pembahasan:
sumbu simetri $x=-\frac{b}{2a}$
$\begin{align*}-\frac{b}{2a}&=1\\-b&=2a\\b&=-2a\end{align*}$
$\begin{align*}f(0)=0\Rightarrow a(0)^2+b(0)+c&=0\\0+0+c&=0\\c&=0\end{align*}$
$\begin{align*}f(4)=-16\Rightarrow a(4)^2+b(4)+c&=-16\\16a+4b+0&=-16\\16a+4(-2a)&=-16\\16a-8a&=-16\\8a&=-16\\a&=-2\end{align*}$
$b=-2a=-2(-2)=4$
$b-a=4-(-2)=6$
B. $\frac{9}{2}$
C. $5$
D. $6$
E. $\frac{13}{2}$
Pembahasan:
Misal berat badan kelima balita secara terurut yaitu :$x_1, x_2, x_3, x_4, x_5$
rata-rata = median = $x_3$
$\frac{x_1+x_2+x_3+x_4+x_5}{5}=x_3\\ \Rightarrow x_1+x_2+x_3+x_4+x_5=5x_3$
Misal balita terakhir yang di tambahkan yaitu $x_6$, dikala $x_6$ di tambahkan, rata-rata-rata bertambah 1:
$\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}=x_3+1\\ \Rightarrow \frac{5x_3+x_6}{6}=x_3+1\\ \Rightarrow 5x_3+x_6=6x_3+6\\ \Rightarrow x_6-x_3=6$
Perhatikan soal, sesudah $x_6$ ditambahkan, median tetap:
$x_1, x_2, x_3, x_4, x_5, x_6$
median : $\frac{x_3+x_4}{2}=x_3\Rightarrow x_3=x_4$
B. 5
C. 4
D. 3
E. 2
Pembahasan:
sumbu simetri $x=-\frac{b}{2a}$
$\begin{align*}-\frac{b}{2a}&=1\\-b&=2a\\b&=-2a\end{align*}$
$\begin{align*}f(0)=0\Rightarrow a(0)^2+b(0)+c&=0\\0+0+c&=0\\c&=0\end{align*}$
$\begin{align*}f(4)=-16\Rightarrow a(4)^2+b(4)+c&=-16\\16a+4b+0&=-16\\16a+4(-2a)&=-16\\16a-8a&=-16\\8a&=-16\\a&=-2\end{align*}$
$b=-2a=-2(-2)=4$
$b-a=4-(-2)=6$
Jawaban : A
Soal No 5
Diketahui median dan rata-rata berat badan 5 balita yaitu sama. Setelah ditambahkan satu data berat badan balita, rata-ratanya meningkat 1 kg, sedangkan mediannya tetap. Jika 6 data berat badan tersebut diurutkan dari yang paling ringan ke yang paling berat, maka selisih berat badan balita terakhir yang di tambahkan dan balita di urutan ke 4 yaitu ... kg.
A. $4$B. $\frac{9}{2}$
C. $5$
D. $6$
E. $\frac{13}{2}$
Pembahasan:
Misal berat badan kelima balita secara terurut yaitu :$x_1, x_2, x_3, x_4, x_5$
rata-rata = median = $x_3$
$\frac{x_1+x_2+x_3+x_4+x_5}{5}=x_3\\ \Rightarrow x_1+x_2+x_3+x_4+x_5=5x_3$
Misal balita terakhir yang di tambahkan yaitu $x_6$, dikala $x_6$ di tambahkan, rata-rata-rata bertambah 1:
$\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}=x_3+1\\ \Rightarrow \frac{5x_3+x_6}{6}=x_3+1\\ \Rightarrow 5x_3+x_6=6x_3+6\\ \Rightarrow x_6-x_3=6$
Perhatikan soal, sesudah $x_6$ ditambahkan, median tetap:
$x_1, x_2, x_3, x_4, x_5, x_6$
median : $\frac{x_3+x_4}{2}=x_3\Rightarrow x_3=x_4$
Karena, $x_6-x_3=6$, dengan mensubstitusi $x_3$ dengan $x_4$, maka kita peroleh $x_6-x_4=6$, dengan demikian selisih balita ke-6 dengan bayi ke-4 yaitu $6$
Jawaban : D
Soal No 6
Hasil bagi suku pertama oleh suku ke 5 suatu barisan aritmetika yaitu $-\frac{1}{7}$. Jika suku ke 6 barisan tersebut yaitu 9, maka suku ke 8 yaitu ....
A. 10
B. 11
C. 13
D. 15
E. 17
Pembahasan:
$\begin{align*}\frac{U_1}{U_5}&=-\frac{1}{7}\\ \frac{a}{a+4b}&=-\frac{1}{7}\\ -7a&=a+4b\\-8a&=4b\\-2a&=b\\b&=-2a\end{align*}$
$\begin{align*} U_6&=9 \\ a+5b&=9 \\ a+5(-2a)&=9 \\a-10a&=9\\-9a&=9\\a&=-1 \end{align*}$
$b=-2a=-2(-1)=2$
$U_8=a+7b=-1+7(2)=-1+14=13$
B. 420
C. 435
D. 450
E. 465
Pembahasan:
Bobot Total Ikan $=\text{rata-rata bobot ikan}\times\text{banyak ikan}$
Misal Bobot Total Ikan $=BT$
$\begin{align*}BT&=(6-0,02x)x\\&=6x-0,02x^2\end{align*}$
Maksimum: $BT'=0$
$\begin{align*}6-0,04x&=0\\0,04x&=6\\x&=\frac{6}{0,04}\\x&=150\end{align*}$
$\begin{align*}\text{Berat total maksimum}&=6(150)-0,02(150)^2\\&=150(6-0,02(150))\\&=150(6-\frac{1}{50}.150)\\&=150(6-3)\\&=150(3)\\&=450\end{align*}$
B. $\frac{4}{3}$
C. $2$
D. $\frac{10}{3}$
E. $4$
Pembahasan:
$\begin{align*}\frac{U_4}{U_2}&=\frac{1}{4}\\ \frac{ar^3}{ar}&=\frac{1}{4}\\r^2&=\frac{1}{4}\\r&=\pm\sqrt{\frac{1}{4}}\\r&=\pm\frac{1}{2}\end{align*}$
Karena rasio negatif, maka yang memenuhi yaitu $r=-\frac{1}{2}$
$\begin{align*}U_3&=\frac{1}{2}\\ar^2=\frac{1}{2}\\a.\frac{1}{4}&=\frac{1}{2}\\a&=2\end{align*}$
$\begin{align*}S_4&=\frac{a(r^4-1)}{r-1}\\&=\frac{2\left(\left(-\frac{1}{2}\right)^4-1\right)}{-\frac{1}{2}-1}\\&=\frac{2\left(\frac{1}{16}-1\right)}{-\frac{3}{2}}\\&=\frac{2\left(-\frac{15}{16}\right)}{-\frac{3}{2}}\\&=\frac{5}{4}\end{align*}$
B. 4
C. 6
D. 8
E. 10
Pembahasan:
$\begin{align*} \left ( g\circ f \right )\left ( a \right )&=0\\\left ( g \left ( f(a) \right )\right )&=0\\ \sqrt{\left ( a^2-1 \right )-3}&=0\\ \sqrt{a^2-4}&=0\\a^2-4&=0\\a^2&=4\\a&=\pm2\end{align*}$
$\begin{align*} \left ( f\circ g \right )\left ( b \right )&=0\\f\left ( g(b) \right )&=0\\\left ( \sqrt{b-3} \right )^2-1&=0\\b-4&=0\\b&=4\end{align*}$
Nilai maksimum selisih $a$ dan $b$ yaitu $4-(-2)=6$
C. $3\sqrt{5}$
D. $2\sqrt{7}$
E. $3\sqrt{13}$
Pembahasan:
$\begin{align*}\frac{YF}{AE}&=\frac{FX}{XE}\\\frac{YF}{6}&=\frac{2}{4}\\YF&=\frac{2}{4}\times 6\\YF&=3\end{align*}$
$\begin{align*}YG&=\sqrt{3^2+6^2}\\&=\sqrt{9+36}\\&=\sqrt{45}\\&=3\sqrt{5}\end{align*}$
B. $24$
C. $1$
D. $\frac{1}{2}$
E. $\frac{1}{4}$
Pembahasan:
B. $-4$
C. $-2$
D. $2$
E. $4$
Pembahasan:
A. 10
B. 11
C. 13
D. 15
E. 17
Pembahasan:
$\begin{align*}\frac{U_1}{U_5}&=-\frac{1}{7}\\ \frac{a}{a+4b}&=-\frac{1}{7}\\ -7a&=a+4b\\-8a&=4b\\-2a&=b\\b&=-2a\end{align*}$
$\begin{align*} U_6&=9 \\ a+5b&=9 \\ a+5(-2a)&=9 \\a-10a&=9\\-9a&=9\\a&=-1 \end{align*}$
$b=-2a=-2(-1)=2$
$U_8=a+7b=-1+7(2)=-1+14=13$
Jawaban : C
Soal No 7
Seseorang memelihara ikan di suatu kolam. Rata-rata bobot ikan per ekor pada dikala panen dari kolam tersebut yaitu $(6-0,02x)$ kg. dengan $x$ menyatakan banyak ikan yang dipelihara. Maksimum total bobot semua ikan pada dikala panen yaitu ....
A. 400B. 420
C. 435
D. 450
E. 465
Pembahasan:
Bobot Total Ikan $=\text{rata-rata bobot ikan}\times\text{banyak ikan}$
Misal Bobot Total Ikan $=BT$
$\begin{align*}BT&=(6-0,02x)x\\&=6x-0,02x^2\end{align*}$
Maksimum: $BT'=0$
$\begin{align*}6-0,04x&=0\\0,04x&=6\\x&=\frac{6}{0,04}\\x&=150\end{align*}$
$\begin{align*}\text{Berat total maksimum}&=6(150)-0,02(150)^2\\&=150(6-0,02(150))\\&=150(6-\frac{1}{50}.150)\\&=150(6-3)\\&=150(3)\\&=450\end{align*}$
Jawaban: D
Soal No 8
Suku ke-3 suatu barisan geometri dengan rasio negatif yaitu $\frac{1}{2}$. Perbandingan suku ke-4 terhadap suku ke-2 yaitu $\frac{1}{4}$. Jumlah 4 suku pertama barisan tersebut yaitu ....
A. $\frac{5}{4}$B. $\frac{4}{3}$
C. $2$
D. $\frac{10}{3}$
E. $4$
Pembahasan:
$\begin{align*}\frac{U_4}{U_2}&=\frac{1}{4}\\ \frac{ar^3}{ar}&=\frac{1}{4}\\r^2&=\frac{1}{4}\\r&=\pm\sqrt{\frac{1}{4}}\\r&=\pm\frac{1}{2}\end{align*}$
Karena rasio negatif, maka yang memenuhi yaitu $r=-\frac{1}{2}$
$\begin{align*}U_3&=\frac{1}{2}\\ar^2=\frac{1}{2}\\a.\frac{1}{4}&=\frac{1}{2}\\a&=2\end{align*}$
$\begin{align*}S_4&=\frac{a(r^4-1)}{r-1}\\&=\frac{2\left(\left(-\frac{1}{2}\right)^4-1\right)}{-\frac{1}{2}-1}\\&=\frac{2\left(\frac{1}{16}-1\right)}{-\frac{3}{2}}\\&=\frac{2\left(-\frac{15}{16}\right)}{-\frac{3}{2}}\\&=\frac{5}{4}\end{align*}$
Jawaban : A
Soal No 9
Diketahui $f(x)=x^2-1$ dan $g(x)=\sqrt{x-3}$. Jika $a$ dan $b$ bilangan real sehingga $(g \circ f)(a)=(f \circ g)(b)=0$, maka maksimum selisih $a$ dan $b$ yaitu ....
A. 2B. 4
C. 6
D. 8
E. 10
Pembahasan:
$\begin{align*} \left ( g\circ f \right )\left ( a \right )&=0\\\left ( g \left ( f(a) \right )\right )&=0\\ \sqrt{\left ( a^2-1 \right )-3}&=0\\ \sqrt{a^2-4}&=0\\a^2-4&=0\\a^2&=4\\a&=\pm2\end{align*}$
$\begin{align*} \left ( f\circ g \right )\left ( b \right )&=0\\f\left ( g(b) \right )&=0\\\left ( \sqrt{b-3} \right )^2-1&=0\\b-4&=0\\b&=4\end{align*}$
Nilai maksimum selisih $a$ dan $b$ yaitu $4-(-2)=6$
Jawaban : C
Soal No 10
Diketahui kubus $ABCD.EFGH$ dengan titik $X$ terletak pada rusuk $EF$ sejauh 2 cm dari $F$, dan $Y$ yaitu titik potong perpanjangan $AX$ dengan $BF$. Jika panjang rusuk kubus yaitu 6 cm, maka jarak $Y$ ke $G$ yaitu ... cm
A. $2\sqrt{6}$
B. $3\sqrt{3}$C. $3\sqrt{5}$
D. $2\sqrt{7}$
E. $3\sqrt{13}$
Pembahasan:
$\begin{align*}\frac{YF}{AE}&=\frac{FX}{XE}\\\frac{YF}{6}&=\frac{2}{4}\\YF&=\frac{2}{4}\times 6\\YF&=3\end{align*}$
$\begin{align*}YG&=\sqrt{3^2+6^2}\\&=\sqrt{9+36}\\&=\sqrt{45}\\&=3\sqrt{5}\end{align*}$
Jawaban : C
Soal No 11
Luas tempat penyelesaian sistem pertidaksamaan $x-y\geq 3$, $2x-y\leq 8$, $y\geq 0$ yaitu ... satuan luas.
A. $4$B. $24$
C. $1$
D. $\frac{1}{2}$
E. $\frac{1}{4}$
Pembahasan:
Perhatikan, tempat penyelesaian merupakan segitiga dengan panjang alas $1$ dan tinggi $2$, maka luas tempat penyelesaian tersebut yaitu $\frac{1}{2}\times 1 \times 2=1$ satuan luas.
Jawaban : C
Soal No 12
Jika garis $y=x+2$ di translasikan dengan $\begin{pmatrix}1\\2\end{pmatrix}$ dan kemudian dicerminkan terhadap sumbu $x$, maka petanya yaitu garis $y=ax+b$, nilai $a+b$ yaitu ....
A. $-5$B. $-4$
C. $-2$
D. $2$
E. $4$
Pembahasan:
garis $y=x+2$ di translasikan dengan $\begin{pmatrix}1\\2\end{pmatrix}$ akan menghasilkan $(y-2)=(x-1)+2\Rightarrow y=x+3$.
garis $y=x+3$ dicerminkan terhadap sumbu $x$ akan menghasilkan $-y=x+3 \Rightarrow y=-x-3$, dengan demikian $a=-1$ dan $b=-3$, maka $a+b=-1+(-3)=-4$
Jawaban : B
Soal No 13
$\int {\frac{1-x}{\sqrt{x}}} dx=$ ....
A. $\frac{3}{2}(3+x)\sqrt{x}+C$
B. $\frac{2}{3}(3-x)\sqrt{x}+C$
C. $\frac{2}{3}\left(3+\sqrt{x}\right)x+C$
D. $\frac{1}{3\sqrt{x}}\left(\frac{1}{x}-1\right)+C$
E. $\frac{1}{2\sqrt{x}}\left(\frac{1}{x}+1\right)+C$
Pembahasan:
$\begin{align*}\int{\frac{1-x}{\sqrt{x}}}dx&=\int{\left(\frac{1}{\sqrt{x}}-\frac{x}{\sqrt{x}}\right)}dx\\ &=\int{\left(x^{-\frac{1}{2}}-x^{\frac{1}{2}}\right)}dx\\ &=2x^{\frac{1}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C\\&=2\sqrt{x}-\frac{2}{3}x\sqrt{x}+C\\&=\frac{2}{3}(3-x)\sqrt{x}+C\end{align*}$
A. $\frac{3}{2}(3+x)\sqrt{x}+C$
B. $\frac{2}{3}(3-x)\sqrt{x}+C$
C. $\frac{2}{3}\left(3+\sqrt{x}\right)x+C$
D. $\frac{1}{3\sqrt{x}}\left(\frac{1}{x}-1\right)+C$
E. $\frac{1}{2\sqrt{x}}\left(\frac{1}{x}+1\right)+C$
Pembahasan:
$\begin{align*}\int{\frac{1-x}{\sqrt{x}}}dx&=\int{\left(\frac{1}{\sqrt{x}}-\frac{x}{\sqrt{x}}\right)}dx\\ &=\int{\left(x^{-\frac{1}{2}}-x^{\frac{1}{2}}\right)}dx\\ &=2x^{\frac{1}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C\\&=2\sqrt{x}-\frac{2}{3}x\sqrt{x}+C\\&=\frac{2}{3}(3-x)\sqrt{x}+C\end{align*}$
Jawaban: B
Soal No 14
jika $f(x)=ax+b$ dan $\lim_{x\to 4}{\frac{f(x)}{\sqrt{x}-2}}=-4$, maka $f(1)=$ ....
A. $-5$
B. $-3$
C. $3$
D. $4$
E. $5$
Pembahasan:
$\begin{align*}\lim_{x\to 4}\frac{ax+b}{\sqrt{x}-2}\\ \Rightarrow\lim_{x\to 4}\frac{a}{\frac{1}{2\sqrt{x}}}=-4\\ \Rightarrow\frac{a}{\frac{1}{4}}=-4\\ \Rightarrow a=-1\end{align*}$
Karena merupakan limit bentuk $\frac{0}{0}$, maka haruslah:
$\f(4)=0\\a(4)+b=0\\-4+b=0\\b=4$
maka $f(x)=-x+4\Rightarrow f(1)=-1+4=3$
B. 175.000
C. 100.000
D. 150.000
E. 125.000
Pembahasan:
Angka : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (10 buah)
Huruf vokal : a, i, u, e, o (5 buah)
Banyak cara menyusun 3 angka dan 2 abjad : $\frac{5!}{3!\times 2!}=10$ cara
kemungkinan 2 abjad berdekatan : HHAAA, AHHAA, AAHHA, AAAHH (4 cara)
Jadi, banyak cara menyusun 3 angka dan 2 abjad tanpa ada 2 abjad berdekatan yaitu $10-4=6$ cara, dengan demikian banyaknya susunan adalah:
$$6\times 10^3\times5^2=150.000$$
$\blacksquare$ Denih Handayani, 2017
A. $-5$
B. $-3$
C. $3$
D. $4$
E. $5$
Pembahasan:
$\begin{align*}\lim_{x\to 4}\frac{ax+b}{\sqrt{x}-2}\\ \Rightarrow\lim_{x\to 4}\frac{a}{\frac{1}{2\sqrt{x}}}=-4\\ \Rightarrow\frac{a}{\frac{1}{4}}=-4\\ \Rightarrow a=-1\end{align*}$
Karena merupakan limit bentuk $\frac{0}{0}$, maka haruslah:
$\f(4)=0\\a(4)+b=0\\-4+b=0\\b=4$
maka $f(x)=-x+4\Rightarrow f(1)=-1+4=3$
Jawaban : C
Soal No 15
Banyak susunan simbol yang terdiri atas tiga angka (boleh berulang) dan dua abjad vokal (boleh berulang) dengan syarat dilarang ada dua abjad berdekatan yaitu ....
A. 75.000B. 175.000
C. 100.000
D. 150.000
E. 125.000
Pembahasan:
Angka : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (10 buah)
Huruf vokal : a, i, u, e, o (5 buah)
Banyak cara menyusun 3 angka dan 2 abjad : $\frac{5!}{3!\times 2!}=10$ cara
kemungkinan 2 abjad berdekatan : HHAAA, AHHAA, AAHHA, AAAHH (4 cara)
Jadi, banyak cara menyusun 3 angka dan 2 abjad tanpa ada 2 abjad berdekatan yaitu $10-4=6$ cara, dengan demikian banyaknya susunan adalah:
$$6\times 10^3\times5^2=150.000$$
Jawaban : D
Semoga bermanfaat.$\blacksquare$ Denih Handayani, 2017
Belum ada Komentar untuk "Soal Dan Pembahasan Sbmptn 2017 (Matdas/Tkpa Arahan 224)"
Posting Komentar